Abstract
We discuss divergence- and volume-preserving geodesic transformations with respect to submanifolds and in particular, with respect to hypersurfaces. We use these transformations to derive characterisations of special classes of hypersurfaces such as isoparametric hypersurfaces and Hopf hypersurfaces with constant principal curvatures. Furthermore, we consider divergence-preserving geodesic transformations with respect to geodesic spheres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.