Abstract

In modeling the charged alpha particle transport in hot-spot plasmas of inertial confinement fusion, the energy-losing rate is a major concern in the Monte Carlo simulations of alpha particle transport of a radiative-hydrodynamic code. However, the traditionally used energy stopping-power only describes the averaged energy-losing rate of the incident charged particles, whereas the variance of the energy exchange with the background particles is generally ignored. In this paper, the variance of charged particle collisions is studied by both analytical derivation and Monte Carlo simulations. An expression of the divergence of the charged particle energy-losing rate is given for the first time, which can be directly used for practical estimations. It indicates that when the areal density of the target particles along the incident particle path length is low, the divergence of the lost energy would be much larger than the average value, and the traditionally used energy stopping-power would be no longer sufficient to describe the charged particle Coulomb collisions. It helps to obtain a more comprehensive understanding about the charged particle transport in plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.