Abstract

In this paper, we propose a unified approach to deformable model-based segmentation. The fundamental force field of the proposed method is based on computing the divergence of a gradient convolution field (GCF), which makes the full use of directional information of the image gradient vectors and their interactions across image domain. However, instead of directly using such a vector field for deformable segmentation as in the conventional approaches, we derive a more salient representation for contour evolution, and very importantly, we demonstrate that this representation of image force field not only leads to global minimum through convex relaxation but also can achieve the same result using the conventional gradient descent with an intrinsic regularization. Thus, the proposed method can handle arbitrary initializations. The proposed external force field for deformable segmentation has both edge-based properties in that the GCF is computed from image gradients, and the region-based attributes since its divergence can be treated as a region indication function. Moreover, nonlinear diffusion can be conveniently applied to GCF to improve its performance in dealing with noise interference. We also show the extension of GCF from 2D to 3D. In comparison to the state-of-the-art deformable segmentation techniques, the proposed method shows greater flexibility in model initialization and optimization realization, as well as better performance toward noise interference and appearance variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.