Abstract
Carleson has proved that the Fourier series of functions belonging to the class L2 converge almost everywhere.Improving his method, Hunt proved that the Fourier series of functions belonging to the class Lp (p > 1) converge almost everywhere. On the other hand, Kolmogoroff proved that there is an integrable function whose Fourier series diverges almost everywhere. We shall generalise Kolmogoroff's Theorem as follows: There is a function belonging to the class L(logL)p (p > 0) whose Fourier series diverges almost everywhere. The following problem is still open: whether “almost everywhere” in the last theorem can be replaced by “everywhere” or not. This problem is affirmatively answered for the class L by Kolmogoroff and for the class L(log logL)p (0 < p < 1) by Tandori.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.