Abstract

Decapod crustaceans, such as alvinocaridid shrimps, bythograeid crabs and galatheid squat lobsters are important fauna in the hydrothermal vents and have well adapted to hydrothermal vent environments. In this study, eighteen mitochondrial genomes (mitogenomes) of hydrothermal vent decapods were used to explore the evolutionary history and their adaptation to the hydrothermal vent habitats. BI and ML algorithms produced consistent phylogeny for Decapoda. The phylogenetic relationship revealed more evolved positions for all the hydrothermal vent groups, indicating they migrated from non-vent environments, instead of the remnants of ancient hydrothermal vent species, which support the extinction/repopulation hypothesis. The divergence time estimation on the Alvinocarididae, Bythograeidae and Galatheoidea nodes are located at 75.20, 56.44 and 47.41–50.43 Ma, respectively, which refers to the Late Cretaceous origin of alvinocaridid shrimps and the Early Tertiary origin of bythograeid crabs and galatheid squat lobsters. These origin stories are thought to associate with the global deep-water anoxic/dysoxic events. Total eleven positively selected sites were detected in the mitochondrial OXPHOS genes of three lineages of hydrothermal vent decapods, suggesting a link between hydrothermal vent adaption and OXPHOS molecular biology in decapods. This study adds to the understanding of the link between mitogenome evolution and ecological adaptation to hydrothermal vent habitats in decapods.

Highlights

  • Deep-sea hydrothermal vents are chemosynthetic ecosystems, which are characteristed by high temperature, low oxygen levels, enriched hydrogen sulfide (H2S), methane (CH4) and heavy metals, such as iron, zinc, and copper [1]

  • The molecular phylogeny of Decapoda was built based on the combined nucleotide sequences of 13 protein-coding genes using Maximum Likelihood (ML) and Bayesian inference (BI) methods

  • Phylogenetic analysis supported that the deep-sea hydrothermal vent alvinocarid shrimps, galatheid squat lobsters, and bythograeid crabs may originated from surrounding non-hydrothermal vent habitats

Read more

Summary

Introduction

Deep-sea hydrothermal vents are chemosynthetic ecosystems, which are characteristed by high temperature (up to 390 ̊C), low oxygen levels, enriched hydrogen sulfide (H2S), methane (CH4) and heavy metals, such as iron, zinc, and copper [1]. Owning to their unusual chemistry, hydrothermal vents have been considered as the home to unique life forms [2]. In addition to chemoautotrophic bacteria, more than 600 animal species have been discovered in this extreme environment [3] Decapod crustaceans, such as alvinocaridid shrimps, bythograeid. Divergence history and hydrothermal vent adaptation of decapod crustaceans study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call