Abstract

We construct wavelet Riesz bases for the usual Sobolev spaces of divergence free functions on that have vanishing normals at the boundary. We give a simultaneous space-time variational formulation of the instationary Stokes equations that defines a boundedly invertible mapping between a Bochner space and the dual of another Bochner space. By equipping these Bochner spaces by tensor products of temporal and divergence-free spatial wavelets, the Stokes problem is rewritten as an equivalent well-posed bi-infinite matrix vector equation. This equation can be solved with an adaptive wavelet method in linear complexity with best possible rate, that, under some mild Besov smoothness conditions, is nearly independent of the space dimension. For proving one of the intermediate results, we construct an eigenfunction basis of the stationary Stokes operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.