Abstract

Summary In this work an approach is described to efficiently reduce inaccuracies of flow data acquired with reduced data acquisition methods based on the physical prior knowledge of zero divergence in 3D velocity vector fields. The divergence-free condition is implemented using a synergistic combination of normalized convolution and divergence-free radial basis functions. The efficacy of the method is demonstrated for aortic flow measurements obtained from undersampled data. Background Cine 3D phase-contrast magnetic resonance imaging (PC-MRI) has emerged as a valuable tool for assessing blood flow patterns [Markl, JCMR’11]. The relatively long acquisition times, however, limit its application in a clinical setting. Over the last years several undersampling techniques such as TSENSE, GRAPPA, PEAK-GRAPPA, k-t SENSE, k-t PCA and Compressed Sensing have been introduced which allow for up to 6-fold acceleration in typical applications [Kozerke,

Highlights

  • Cine 3D phase-contrast magnetic resonance imaging (PC-MRI) has emerged as a valuable tool for assessing blood flow patterns [Markl, JCMR’11]

  • In-vivo cine 3D PC-MRI data of the aorta was acquired in 5 healthy volunteers using a 6-element cardiac coil array on a 3T Philips Achieva systems (Philips Healthcare, Best, The Netherlands). 24 heart phases and 26-34 slices were recorded at a spatial resolution of 1.43mm x 1.43mm x 1.75mm. 2x, 4x and 8x undersampling with 75% partial Fourier sampling was simulated

  • Divergence-free reconstruction leads to a reduction in errors in flow direction, which can be seen in improved in-plane flow pattern

Read more

Summary

Open Access

Divergence-free reconstruction for accelerated 3D phase-contrast flow measurements. Summary In this work an approach is described to efficiently reduce inaccuracies of flow data acquired with reduced data acquisition methods based on the physical prior knowledge of zero divergence in 3D velocity vector fields. The divergence-free condition is implemented using a synergistic combination of normalized convolution and divergence-free radial basis functions. The efficacy of the method is demonstrated for aortic flow measurements obtained from undersampled data

Background
Methods
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.