Abstract

The impact of intraspecific hybridisation on fitness and morphological traits depends on the history of natural selection and genetic drift, which may have led to differently coadapted gene-complexes in the parental populations. The divergence at neutral and non-neutral loci between populations can be evaluated by estimating FST and QST respectively, and hence give an estimate of drift and selection in the populations. Here we investigate (1) whether divergence between populations in quantitative traits (wing size and shape) can be attributed to selection or drift alone, (2) The impact of intraspecific hybridisation on estimators for divergence at neutral (FST) and non-neutral loci (QST) in hybrids, (3) If measurement of shape is more informative than size in order to detect divergence in quantitative traits between populations. The aims were addressed by performing two hybridisations between three populations of Drosophila buzzatii, one between populations from Argentina and the Canary Islands (separated for 200 years), and the other between populations from Argentina and Australia (separated for 80 years). We observed the highest divergence at neutral loci between the Argentinean and Canary Island populations, but highest morphological divergence between the Argentinean and Australian populations, indicating that natural selection is acting on the wings. Divergence based on QST measures in the hybrids was sensitive towards increased phenotypic variance (σ2p) within groups and should be used with care when σ2p of populations differ. Our results indicate that measures of shape give a better estimate of divergence at the underlying quantitative traits loci than measures of size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call