Abstract

We study proof techniques for bisimilarity based on unique solution of equations. We draw inspiration from a result by Roscoe in the denotational setting of CSP and for failure semantics, essentially stating that an equation (or a system of equations) whose infinite unfolding never produces a divergence has the unique-solution property. We transport this result onto the operational setting of CCS and for bisimilarity. We then exploit the operational approach to: refine the theorem , distinguishing between different forms of divergence; derive an abstract formulation of the theorems, on generic LTSs; adapt the theorems to other equivalences such as trace equivalence, and to preorders such as trace inclusion. We compare the resulting techniques to enhancements of the bisimulation proof method (the 'up-to techniques'). Finally, we study the theorems in name-passing calculi such as the asynchronous π-calculus, and revisit the completeness proof of Milner's encoding of the λ-calculus into the π-calculus for Levy-Longo Trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.