Abstract
NASICON is one of the most promising sodium solid electrolytes that can enable the assembly of cheaper and safer sodium all-solid-state batteries. In this study, we perform a combined experimental and computational investigation into the effects of aliovalent doping in NASICON on both bulk and grain boundary (secondary phase) ionic conductivity. Our results show that the dopants with low solid solubility limits in NASICON lead to the formation of a conducting (less insulating) secondary phase, thereby improving the grain boundary conductivity measured by electrochemical impedance spectroscopy (including grain-boundary, secondary-phase, and other microstructural contributions) that is otherwise hindered by the poorly-conducting secondary phases in undoped NASICON. This is accompanied by a change in the Si/P ratio in the primary NASICON bulk phase, thereby transforming monoclinic NASICON to rhombohedral NASICON. Consequently, we have synthesized NASICON chemistries with significantly improved and optimized total ionic conductivity of 2.7 mS/cm. More importantly, this study has achieved an understanding of the underlying mechanisms of improved conductivities via doping (differing from the common wisdom) and further suggests a new general direction to improve the ionic conductivity of solid electrolytes via simultaneously optimizing the primary bulk phase and the microstructure (including grain boundary segregation and secondary phases).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.