Abstract
The Na+-dependent phosphate transport system in the brush border of rabbit kidney exhibits a positive requirement for a divalent metal ion. Treatment of the brush-border membrane vesicles (BBMV) with a divalent metal chelator in combination with the divalent metal ionophore A23187 dramatically and selectively decreased the Na+-dependent uptake of phosphate; Na+-independent uptake of phosphate was not affected. The combination of chelator plus A23187 also inhibited uptake of phosphate in the presence of Na+ but in the absence of a gradient for sodium across the BBMV. This indicates that the inhibitor is not a result of an alteration in the Na+ gradient by chelator plus ionophore. The inhibited Na+ gradient-dependent transport of phosphate was restored by removing the chelator and adding Mn2+ to the BBMV. The phosphate-binding proteolipid (phosphorin) isolated from rabbit kidney BBMV binds inorganic phosphate with high affinity and specificity. Binding of phosphate to phosphorin is also inhibited by divalent metal chelators and can be restored by addition of a divalent metal. We conclude that a divalent metal ion is required both for the Na+-dependent phosphate transport in BBMV and for the binding of phosphate to the proteolipid phosphorin. These findings are consistent with our suggestion that phosphorin is a component of the Na+-dependent phosphate transport system in renal brush-border membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.