Abstract
Ongoing efforts to develop a predictive model governing the host-referred binding energies (HRBEs) and vacuum-referred binding energies (VRBEs) of transition metal dopants in inorganic host compounds are stymied by a lack of cross-compound data sets that capture transitions between the dopant ions and the valence and conduction bands of the hosts. Herein, we have compiled data consistent with Mn2+ charge transfer processes in 53 different compounds, spanning fluorides, oxides, chlorides, bromides, and nitrides. By assigning these transitions to Mn2+ → conduction band metal-to-metal charge transfer and combining these energies with the binding energies of electrons in the valence and conduction bands of the various hosts, we have calculated the HRBEs and VRBEs of the Mn2+ ion across a range of compounds. We show that variations in the Mn2+ VRBE are small relative to the variations in the VRBE of the valence and conduction bands, which manifests an approximately linear relationship between the Mn2+ HRBE and the bandgap energy of host compounds. We investigated the relationship between the Mn2+ VRBE and the various structures of the host compounds and showed that the chemical shift experienced by the Mn2+ ion depends on the electronegativity of the ligand, the Mn2+ coordination, and the Mn-ligand bond lengths in a predictable manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.