Abstract

A novel approach on incorporation of divalent species such as Mg, Ca and Sr into the titania nanostructures formed on Ti metal surface and their comparative study on enhancement of bioactivity, protein adsorption and cell compatibility is reported. When treated with hydrogen peroxide, Ti metal forms hydrogen titanate. On subsequent treatment with Mg or Ca or Sr nitrate solutions, respective ions are incorporated into hydrogen titanate layer, and heat treatment leads to titania decorated with these ions. The resultant heat-treated samples when soaked in simulated body fluid form bone-like apatite which indicates the present surface modification enhances the bioactivity. Further, enhanced protein adsorption in bovine serum albumin is an indication of suitability of these divalent species to form chelate compounds with amino acids, and Ca containing titania nanostructure favours more protein adsorption compared to the others. Cytocompatibility studies using MG-63, human osteosarcoma cell lines shows these divalent ion containing titania nanostructure favours the cell attachment and did not show any cytotoxicity. Bioactivity, enhanced protein adsorption along with cytocompatibility clearly indicates such surface modification approach to be useful to design hard tissue replacement materials in orthopaedic and dental field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call