Abstract

Mn 2+ binding to vesicles prepared from several different species of anionic phospholipids was determined as a function of temperature by electron paramagnetic resonance (EPR). The Mn 2+ affinities of phosphatidylserine, cardiolipin and egg yolk phosphatidylglycerol all increased monitonically with temperature. Vesicles prepared from hydrogenated and natural (bovine) phosphatidylserine were monitored with respect to hydrocarbon chain fluidity as well as Mn 2+ binding. Contrary to expectations based on surface potential considerations, the affinity of phosphatidylserine for divalent cations was apparently not lowered in going from the gel state to the liquid crystalline state of the bilayer. The results are instead consistent with an enhancement in cation affinity with increased lipid fluidity. Dipalmitoyl phosphatidylglycerol vesicle fluidity and Mn 2+ binding were also studied with EPR. A large reduction in the measured Mn 2+ affinity accompanied melting of the phospholipid, but observed hysteresis in the temperature dependence of the binding render uncertain any simple explanation based on changes in surface potential. Supplementary light scattering data indicated that vesicle aggregation was involved in the hysteresis phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.