Abstract

In this study, the characteristics and formation mechanism of summertime isoprene, monoterpene, and toluene-derived secondary organic aerosols (SOAs) were investigated in a rural area of Guanzhong Plain, Northwest China. The variations in key indicators of primary sources indicated a significant influence of biomass burning on PM2.5 during the observation period. The concentrations of total measured SOA tracers from isoprene, monoterpene, and toluene were 40.85 ± 17.31, 24.27 ± 7.50, and 10.61 ± 0.33 ng/m3, respectively. The average ratio of cis-pinonic and pinic acids to 3-Methyl-1,2,3-butanetricarboxylic acid (MBTCA)(P/M) were 0.45 and 0.85 by day and by night, respectively. The low ratio in the daytime was mainly due to the stronger photo-degradation and particle-to-gas distribution of semi-volatile cis-pinonic and pinic acids. The monoterpene SOA tracers were significantly correlated with levoglucosan at night (R2 = 0.51, p < 0.01), as were toluene SOA tracers and levoglucosan (R2 > 0.67, p < 0.01), indicating the significant contribution of biomass combustion to these SOAs. The mass concentration of isoprene-, monoterpenes-, and toluene-derived SOC was estimated by using the tracer yield method. The total calculated SOCs by day and by night were 0.25–0.71 (average: 0.46) and 0.26–0.78 (average: 0.42) µgC/m3, accounting for 3.35–10.58% and 3.87–13.51% of OC by day and by night, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call