Abstract

The data from the synchronous-orbit satellites of the Gorizont series are used to study the dependences of the ion flux variation amplitudes in the synchronous altitude region (the diurnal behaviour) on particle energies and on the form and rigidity of the particle energy spectrum. The proton fluxes were measured in the energy range E ∼ 60–120 keV, and the [N,0] 2+ and [C,N,0] 4+ ion fluxes in the energy range E ∼ 60–70 keV/e. The ratio of the diurnal variation amplitudes of the studied ions is shown to correspond to the similarity of their energy spectra in the E/Q representation. The magnetically-quiet time gradient of the distribution function F(μ,J,L) in the synchronous-orbit region is shown to be (∂F/∂L)=0 for the H + and [N,0] 2+ ions and (∂F/∂L) > 0 for the [C,N,0] 4+ ions (at the values of μ corresponding to the examined energy ranges). During magnetically-disturbed periods the inner boundary of the (∂F/∂L)=0 region shifts to lower L and (∂ F/∂L) = O in the synchronous altitude region must be also for the [C,N,O] 4+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.