Abstract

Measuring fluxes of greenhouse gases (GHGs) is fundamental to estimating their impact on global warming. We examined diurnal variations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) vertical fluxes in a tidal marsh ecosystem. Measurements were recorded on neap and spring tide days in April and September 2010 in the Shanyutan wetland of the Min River estuary, southeast China. Here, we define a positive flux as directing into the atmosphere. CH4 fluxes on the diurnal scale were positive throughout, and CH4 emissions into the atmosphere on neap tide days were higher than on spring tide days. CH4 releases from the marsh ecosystem on neap tide days were higher in the daytime; however, on spring tide days, daily variations of CH4 emissions were more complex. The marsh ecosystem plays a twofold role in both releasing and assimilating CO2 and N2O gases on the diurnal scale. Average CO2 fluxes were positive on the daily scale both on neap and spring days and were greater on the neap tide days than on spring tide days. Diurnal variations of N2O fluxes fluctuated more. Over the diurnal period, soil temperature markedly controlled variations of CH4 emissions compared to other soil factors, such as salinity and redox potential. Tidal water height was a key factor influencing GHGs fluxes at the water–air interface. Compared with N2O, the diurnal course of CO2 and CH4 fluxes in the marsh ecosystem appeared to be directly controlled by marsh plants. These results have implications for sampling and scaling strategies for estimating GHGs fluxes in tidal marsh ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call