Abstract

Abstract Using abundant rainfall gauge measurements and Global Precipitation Mission (GPM) data, spatial patterns of rainfall diurnal cycles and their seasonality over high mountain Asia (HMA) were examined. Spatial distributions of rainfall diurnal cycles over the HMA have a prominent seasonality regulated by circulations at different spatiotemporal scales, within which large regional contrasts are embedded. Rainfall diurnal variability is relatively weak in the premonsoon season, with larger amplitude over the western HMA, the southeastern HMA, as well as southern periphery regions, characterized by a dominant late afternoon to morning rainfall preference. The pattern of rainfall spatial distributions is closely related to the midlatitude westerlies. Both the mean rainfall and amplitudes of diurnal cycles become more pronounced with the advance of monsoon season but weaken during postmonsoon. The widespread late afternoon to night pattern over HMA migrating with seasonal atmospheric circulation is consistent with the lifetime of convective systems, which become active from the afternoon due to radiative heating and decay during the night. Stationary terrain-dependent night-to-morning rainfall patterns are visible in those east–west-orientated valleys over HMA and the Qaidam basin throughout the seasons. This salient geographical dependence is associated with local circulation produced by the strong differential thermal conditions over mountains and valleys, which can lift the warm moist air at the mouth of the valley and trigger nocturnal convection. Significance Statement The main purpose of this study is to explore how spatial patterns of rainfall diurnal cycles over high mountain Asia vary with the seasons. Our results show that the widespread late afternoon to night rainfall over high mountain Asia migrating with seasonal atmospheric circulation is consistent with the lifetime of convective systems. Stationary terrain-dependent night-to-morning rainfall patterns are visible in those east–west-orientated valleys over high mountain Asia and the Qaidam basin throughout the seasons. These results highlight the importance of large-scale atmospheric circulation and local circulation on precipitation, which is critical for water resources over high mountain Asia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.