Abstract

Diurnal variation in the rate of methane emission and its relation to water table depth and macro climate was studied in several plant communities within an acid,Sphagnum dominated, mixed mire in Northern Sweden. Provided that diurnal variation in solar radiation and air temperature occurred, methane fluxes differed during day and night. Diurnal patterns in methane emission rates were found to differ among mire plant communities. In relatively dry plant communities (ridges, minerotrophic lawn), the average nighttime emission rates were 2–3 times higher than the daytime rates during the two periods with high diurnal variation in solar radiation and air temperature. Methane emission was significantly (p < 0.05) related to solar radiation and soil temperature at depths of 5 and 10 cm at all sampling points in the dry plant communities. In the wetter plant communities, no significant difference between daytime and nighttime average methane emission rates were found even though methane emissions were significantly related with radiation and soil temperature at approximately 70% of the sampling points. The increased emission rate for methane at night in the comparatively dry plant communities was probably caused by an inhibition of methane oxidation, owing to the lower nighttime temperatures or to a delay in the supply of root-exuded substrate for the anaerobic bacteria, or by both. The pattern observed in the wet plant communities indicated that methane production were positively related either to soil temperature or light-regulated root exudation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call