Abstract

The objective was to study the diurnal variation in metabolites in plasma and milk of dairy cows fed total mixed rations (TMR) with a low-energy (LE) or high-energy content (HE) expected to give a minor and a major diurnal variation, respectively. Further, the purpose was to quantify and compare the responses in plasma and milk parameters when cows changed from ad libitum to restrictive feeding. Eight multiparous, early-lactating Danish Holstein cows were used in a cross-over design with two consecutive 14-day periods. Blood and milk samples were collected hourly on day 11 of each period and on days 12-14 of each period, the cows were fed restrictively (65% of ad libitum dry-matter intake). The concentration of beta-hydroxybutyrate (BHB) in plasma was significantly higher in the evening for cows fed the HE TMR, than for cows fed the LE TMR. There was a significant diurnal variation in BHB in milk, with the highest concentrations between milkings and the lowest concentrations at milking. Non-esterified fatty acids (NEFA) in plasma showed significant diurnal variation that was caused by high concentrations in the morning. Plasma glucose did not show any diurnal variation. It has been argued that feeding a TMR removes diurnal changes related to feeding, which is contrary to earlier diurnal studies where concentrates have been fed twice daily. Feed restriction increased (P < 0.001) NEFA and BHB in plasma by 121 and 90%, respectively, while the glucose concentration decreased (P < 0.001) by 19%. Milk concentrations of BHB, citrate and fat increased (P < 0.001) by 163, 11 and 26%, respectively, because of feed restriction, while there were no changes in milk protein and lactose. The relatively high increase in BHB during feed restriction suggests that BHB is more advantageous as a milk indicator of metabolic status in dairy cows than citrate and fat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.