Abstract

The objective of this work is to study the diurnal evolution of the radiative impact of atmospheric aerosols in an urban city located in the West African Sahel and the correlations with the main influencing factors of local climate dynamics. The simulation was performed using a treatment chain including the GAME code. In the methodology, the atmosphere is modeled by 33 plane parallel layers and the effects of absorption, multiple scattering by particles and gas are taken account. An hour-by-hour calculation of radiative forcing at the top of the atmosphere, in the atmospheric layer and at the earth’s surface was performed. The data used as input are the monthly averages of optical properties, radiosonde measurements, daily synoptic measurements and surface albedo. The results show a parabolic diurnal course of a negative radiative impact at the top of the atmosphere with an extremum at 12 o'clock. Maximum cooling is observed shortly after sunrise and shortly after sunset. The largest annual deviations are noted between the months of March and December with respective maximum cooling values of -34 W/m2 and -15.60 W/m2. On the earth’s surface, a cooling impact is observed with two diurnal peaks at sunrise and sunset, the greatest difference between the diurnal maximums is noted between March (-104.45 W/m2) and August (-54 W/m2). In the atmospheric layer, there is almost constant diurnal warming between 9 a.m. and 4 p.m. The maximum difference between the diurnal extremes is also noted between March (about 85 W/m2) and August (35 W/m2). Likewise, the study of the diurnal warming of the first atmospheric layer showed the extreme values in March (5.6°C) and August (2.4°C), these maximum values being always observed at around 12 o’clock. An analysis of similar works carried out in urban cities in various locations of the world has shown a relatively good accordance with the values obtained. This study highlights the radiative impact of Saharan desert dust, the effect of the local climate and the succession between dry season (November to May) and the rainy one (July to October), as well as the zenith solar angle and human activity.

Highlights

  • Ouagadougou is the capital of Burkina Faso, a landlocked country in West Africa bordering in its northern part with the Sahara Desert

  • The objective of this work is to study the diurnal evolution of the radiative impact of atmospheric aerosols in an urban city located in the West African Sahel and the correlations with the main influencing factors of local climate dynamics

  • We make an hour-by-hour estimate of the radiative impact at the top of the atmosphere (TOA), on the earth’s surface (BOA) as well as in the atmospheric layer (ATM) for each month of the year

Read more

Summary

Introduction

Ouagadougou is the capital of Burkina Faso, a landlocked country in West Africa bordering in its northern part with the Sahara Desert. Ouagadougou, like the entire Sahelian zone, is strongly impacted by these important emissions which significantly affect the optical and microphysical properties of aerosols [6]. This situation directly affects the radiative properties of atmospheric aerosols in the city of Ouagadougou, which is subject to the effect of emissions linked to human activity. Numerous studies have highlighted the combined effects of the climatic season and human activity on the composition and properties of aerosols in large urban cities [7] [8]. The objective of this work is to study, the monthly evolution of the diurnal radiative forcing in Ouagadougou as well as the influence of the seasonal variability of the West African climate

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.