Abstract

Abstract—The diurnal dynamics of methane content in the near-bottom phototrophic biomass of the shallow soda Lake Bitter 1 (Gorchina 1) with a salinity of 30 g/L during the study period was investigated. The community was dominated by filamentous cyanobacteria, although no layered mat was formed. The maximum value of methane content up to 202.4 nmol CH4/cm3 was revealed in the morning hours, which significantly exceeded the night values (28.9–42.8 nmol CH4/cm3). Comparison of data on the content of methane with the relative abundance of cyanobacteria, methanogenic archaea, and methanotrophic bacteria during the twenty-four hours indicated that active processes of the methane cycle in soda lakes occurred not only in the sediments, but also in the near-bottom cyanobacterial communities. Methane content in the biomass of such a community is the result of a balance between the processes of its release by methanogens, consumption by methanotrophic bacteria, and natural degassing. It is assumed that the morning peak of methane content is associated with the release of hydrogen by diazotrophic cyanobacteria, which stimulates the development and activity of hydrogenotrophic methanogens of the genus Methanocalculus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.