Abstract

Abstract The characteristics of shallow and deep convection during the Tropical Rainfall Measuring Mission/Large-Scale Biosphere–Atmosphere Experiment in Amazonia (TRMM/LBA) and the Eastern Pacific Investigation of Climate Processes in the Coupled Ocean–Atmosphere System (EPIC) are evaluated in this study. Using high-quality radar data collected during these two tropical field experiments, the reflectivity profiles, rain rates, fraction of convective area, and fraction of rainfall volume in each region are examined. This study focuses on the diurnal cycle of shallow and deep convection for the identified wind regimes in both regions. The easterly phase in TRMM/LBA and the northerly wind regime in EPIC were associated with the strongest convection, indicated by larger rain rates, higher reflectivities, and deeper convective cores compared to the westerly phase in TRMM/LBA and the southerly regime in EPIC. The diurnal cycle results indicated that convection initiates in the morning and peaks in the afternoon during TRMM/LBA, whereas in the east Pacific the diurnal cycle of convection is very dependent on the wind regime. Deep convection in the northerly regime peaks around midnight, nearly 6 h before its southerly regime counterpart. Moreover, the northerly regime of EPIC was dominated by convective rainfall, whereas the southerly regime was dominated by stratiform rainfall. The diurnal variability was more pronounced during TRMM/LBA than in EPIC. Shallow convection was associated with 10% and 3% of precipitation during TRMM/LBA and EPIC, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.