Abstract

Abstract The interannual variability of precipitation over the island of Borneo in association with El Niño–Southern Oscillation (ENSO) has been studied by using the Global Precipitation Climatology Centre (GPCC) gridded rain gauge precipitation, the NOAA Climate Prediction Center (CPC) Morphing Technique (CMORPH) satellite estimated precipitation, the Quick Scatterometer (QuikSCAT) satellite estimated sea winds, and the National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research (NCAR) reanalysis data. Analysis of the GPCC precipitation shows a dipolar structure of wet southwest versus dry central and northeast in precipitation anomalies associated with El Niño over Borneo Island during the austral summer [December–February (DJF)]. By using the 0.25° and 3-hourly CMORPH precipitation, it is found that rainfall over Borneo is strongly affected by the diurnal cycle of land–sea breezes. The spatial distribution of rainfall over Borneo depends on the direction of monsoonal winds. Weather typing analysis indicates that the dipolar structure of rainfall anomalies associated with ENSO is caused by the variability in the frequency of occurrence of different weather types. Rainfall is enhanced in the coastal region where sea breezes head against off-shore synoptic-scale low-level winds (i.e., in the lee side or wake area of the island), which is referred to here as the “wake effect.” In DJF of El Niño years, the northwesterly austral summer monsoon in southern Borneo is weaker than normal over the Maritime Continent and easterly winds are more frequent than normal over Borneo, acting to enhance rainfall over the southwest coast of the island. This coastal rainfall generation mechanism in different weather types explains the dipole pattern of a wet southwest versus dry northeast in the rainfall anomalies over Borneo Island in the El Niño years.

Highlights

  • Borneo, located in the Maritime Continent in Southeast Asia, is the third largest island in the world

  • Its climate is strongly affected by the interannual variability of El Nino–Southern Oscillation (ENSO) (Ropelewski and Halpert 1987, 1996)

  • We hypothesize that analogous multiscale interactions can explain the dipolar anomalies over Borneo during DJF of ENSO years as well, and the aim of the current study is to explore this hypothesis using a weather-typing analysis similar to that used in Moron et al (2009) and Qian et al (2010)

Read more

Summary

Introduction

Borneo, located in the Maritime Continent in Southeast Asia, is the third largest island in the world.

MARCH 2013
Observed data
Conclusions and discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.