Abstract

Spatial and temporal variations in vegetation dielectric properties strongly influence the microwave backscatter characteristics of forested landscapes. This paper examines the relationship between xylem tissue dielectric constant, xylem sap flux density, and xylem sap chemical composition as measured in the stems of two Norway Spruce (Picea abies [L.] Karst.) trees in the Fichtelgebirge region of Northern Bavaria, Germany. Dielectric constant and xylem sap flux were monitored continuously from June through October 1995, at several heights along the tree trunks. At the end of the measurement series, each tree was harvested, and its xylem sap extracted and analyzed to determine the concentrations of amino acids and cations. Results show that the sap flux density was correlated with vapor pressure deficit (VPD) at all heights in the stem. In contrast, the xylem tissue dielectric constant is influenced by VPD but can exhibit a significant temporal lag relative to changes in VPD. This lag varies with position along the tree trunk. The temporal variability of the dielectric constant is compared with both trees at several positions along the tree trunks. Results of xylem sap chemical analysis are presented. We show that spatial and temporal variability in the xylem tissue dielectric constant is influenced not only by water content, but by variations in xylem sap chemistry as well. This has important implications for microwave remote sensing of forested landscapes, as useful information may be acquired regarding stand physiology and water relations and where variations in dielectric properties within individual trees and across geographic areas can be significant error sources for forest inventory mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.