Abstract

In order to use rationally switchgrass (Panicum virgatum L.) introduced in a large scale in semiarid regions on the Loess Plateau of China, we investigated and compared soil water storage dynamics, diurnal and seasonal changes in leaf photosynthetic characteristics, and biomass production of switchgrass grown under three different row spacing (20, 40, and 60 cm). Results indicated that photosynthetic parameters showed a pronounced seasonality. Diurnal course of net photosynthetic rate (PN) was bimodal, showing obvious midday depression, which was mainly due to stomatal limitation in May and June, by nonstomatal limitation in August, and both stomatal and nonstomatal factors in September. Generally, PN, stomatal conductance, instantaneous water-use efficiency, light-saturated net photosynthetic rate, saturation irradiance, and compensation irradiance increased with increasing row spacing. Plant height, leaf width, and a relative growth rate of biomass accumulation were significantly higher at the row spacing of 60 cm, while 20 cm spacing showed significantly higher aboveground biomass production and the biomass water-use efficiency. All these confirmed that soil water is the key limiting factor influencing switchgrass photosynthesis, and suggested that the wide row plantation (i.e., 60 cm) was more beneficial to switchgrass growth, while narrow spacing was in favor of improving switchgrass productivity and water-use efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call