Abstract

We overview the coordination chemistry of ditopic and tetratopic ligands with 4,2':6',4''-terpyridine metal-binding domains and illustrate the adaptability of these divergent ligands as building blocks in 2D- and 3D-coordination networks. The ditopic ligands we discuss are limited to roles as linkers in coordination assemblies, while the tetratopic ligands have the potential to be 4-connecting nodes. Both di- and tetratopic ligands are equipped with functionalities, typically alkyloxy chains, the nature of which has a profound effect upon the coordination assembly. Combinations of 4-connecting ligand nodes with metal-linkers lead to both 2D- and 3D-networks, while combinations of 4-connecting metal and ligand nodes give 3D-architectures. We also demonstrate constraint of the coordination assembly to 2-dimensions by depositing ditopic 4,2':6',4"-terpyridine ligands onto Au(111) or Cu(111) platforms with Cu adatoms in the former case; highly ordered ladder assemblies result which are independent of solvent molecules or anions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.