Abstract

Four different dianionic bis(amidinate) ligands ((iPr)L(DBF)(2)(-), (tBu,Et)L(DBF)(2)(-), (iPr)L(Xan)(2)(-), (tBu,Et)L(Xan)(2)(-)) featuring rigid dibenzofuran (DBF) and 9,9-dimethylxanthene (Xan) backbones have been used to prepare several new dititanium complexes. Reaction of the free-base bis(amidines) (LH(2)) with 2 equiv of Ti(NMe(2))(4) forms the hexaamido derivatives (iPr)L(DBF)Ti(2)(NMe(2))(6) (1), (tBu,Et)L(DBF)Ti(2)(NMe(2))(6) (2), (iPr)L(Xan)Ti(2)(NMe(2))(6) (3), and (tBu,Et)L(Xan)Ti(2)(NMe(2))(6) (4) in good yields. Compound 4, which features an unsymmetrically substituted bis(amidinate) ligand, was isolated as an 8:1 mixture of rotational diastereomers with C(2) and C(s)() symmetry, respectively. The two diastereomers interconvert upon heating, and at equilibrium the C(2) isomer is preferred thermodynamically by 0.2 kcal/mol. Compound 3 reacts with excess Me(3)SiCl in toluene to form the mixed amido-chloride derivative (iPr)L(Xan)Ti(2)(NMe(2))(2)Cl(4) (5) in low-moderate yield. Alternatively, 5 is also prepared by reaction of (iPr)L(Xan)H(2) with 2 equiv of Ti(NMe(2))(2)Cl(2) in good yield. Compound 3 reacts with CO(2) to form the red carbamate derivative (iPr)L(Xan)Ti(2)(NMe(2))(4)(O(2)CNMe(2))(2) (6) in moderate yield. Infrared data for 6 indicates bidentate coordination of the carbamate ligands. Metathesis reaction of (iPr)L(Xan)Li(2) with 2 equiv of CpTiCl(3) affords (iPr)L(Xan)Ti(2)Cp(2)Cl(4) (7) in moderate yield. Reduction of 7 with 1% Na amalgam in toluene solution affords the paramagnetic dititanium(III) complex (iPr)L(Xan)Ti(2)Cp(2)Cl(2) (8) in good yield. Structural studies reveal that 8 features two bridging chloride ligands. Reaction of the free-base bis(amidines) with 2 equiv of CpTiMe(3) forms the red sigma-alkyl derivatives (iPr)L(DBF)Ti(2)Cp(2)Me(4) (9), (tBu,Et)L(DBF)Ti(2)Cp(2)Me(4) (10), and (iPr)L(Xan)Ti(2)Cp(2)Me(4) (11) in good yields. Structural data are presented for compounds 4, 5, 8, and 9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.