Abstract
Dithiocarbamate derivatives possess diverse biological activities. This work further expands their activity profile by identifying seven benzylamine-containing dithiocarbamate derivatives with piperazine and piperidine substitutions at the main moiety, and five piperazine-containing dithiocarbamates with various substitutions at the piperazine moiety as new inhibitors of α-glucosidase. Compounds bearing the benzylamine moiety exhibited more potent inhibition of the enzyme than the piperazine derivatives. Majority of the compounds non-competitively inhibited α-glucosidase that led to the identification of a new allosteric site on the enzyme with the help of molecular dynamics and docking studies. These studies suggest that the compounds regulate inhibition of the enzyme by binding to an allosteric site that is located in the vicinity of the active site. This is the first report on the allosteric inhibition of α-glucosidase by dithiocarbamate derivatives that provides insights into the mechanism of inhibition of the enzyme at molecular level. Moreover, it also explores new avenues for drug development of α-glucosidase inhibitors as antidiabetic drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.