Abstract

AbstractBy employing a mechanically controllable break junction technique, we have realized an ideal single molecular linear actuator based on dithienylethene (DTE) based molecular architecture, which undergoes reversible photothermal isomerization when subjected to UV irradiation under ambient conditions. As a result, open form (compressed, UV OFF) and closed form (elongated, UV ON) of dithienylethene‐based molecular junctions are achieved. Interestingly, the mechanical actuation is achieved without changing the conductance of the molecular junction around the Fermi level over several cycles, which is an essential property required for an ideal single molecular actuator. Our study demonstrates a unique example of achieving a perfect balance between tunneling width and barrier height change upon photothermal isomerization, resulting in no change in conductance but a change in the molecular length, which results in mechanical actuation at the single molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.