Abstract
Positively charged phosphorus-containing heterocycles are characteristic core skeletons for functional molecules. While various phosphonium-containing five- or six-membered-ring compounds have been reported, the seven-membered-ring phosphepinium have not been fully studied yet. In this study, dithieno[3,2-b; 2',3'-f]phosphepinium ions containing electron-donating aminophenyl groups were synthesized. An X-ray crystallographic analysis of the resulting donor-acceptor-donor dyes revealed a bent conformation of the central seven-membered ring. These compounds exhibit fluorescence in the near-infrared region with a bathochromic shift of ca. 70 nm compared to a phosphepine oxide congener and a large Stokes shift. High fluorescence quantum yields were obtained even in polar solvents due to the suppression of the nonradiative decay process. A theoretical study revealed that the phosphepinium skeleton is highly electron-accepting owing to the orbital interaction between a px orbital of the phosphonium moiety and a π* orbital of the 1,3,5-hexatriene moiety. Due to the lower-lying px orbital in the phosphonium moiety compared to that of the phosphine oxide and the bent conformation of the seven-membered ring, the phosphepinium ring permits effective px-π* conjugation. A large structural relaxation with a contribution of a quinoidal resonance structure is suggested in the excited state, which should be responsible for the bright emission with a large Stokes shift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.