Abstract
This paper presents a nonsmooth adaptive extremum seeker that minimizes the hydrogen consumption in a fuel-cell system. The extremum seeker operates by estimating the gradient of the objective function but, unlike other seekers, it does not require a dither signal to produce such estimate. The absence of a dither signal simplifies the choice of parameter values for the seeker, and more importantly, it allows it to converge to the optimal value exactly, not only to a small neighborhood. The proper functioning of the proposed scheme is proved using nonsmooth Lyapunov analysis. The strategy is tested on the input–output map of a real polymer electrolyte fuel cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.