Abstract

Large companies are increasingly providing their services over interdomain data centers. Such large-scale wireless communication networks carry various applications, including both online time-sensitive services and offline bandwidth-sensitive services. These applications share the same physical links but have different bandwidth requirements at different time, making the coscheduling problem a key challenge in improving the overall network utility. Most existing commercial systems reserve peak value bandwidth for online time-sensitive services to ensure the quality of service and use the leftover bandwidth to transmit offline data in a best-effort manner. Such systems cannot obtain high link utilizations because of the nonstationarity of online traffic. To solve this problem, we present a dynamic isolated transmission (DIT) system in this paper, where a sliding- k algorithm is designed to predict online traffic, and a bottleneck bypass routing scheme is proposed to schedule the mixed traffic in a shared inter-DC wireless communication network. We conduct a series of experiments in an experimental inter-DC wireless communication network to analyze for efficient network operation of the DIT and compare its performance with typical existing fix-bandwidth-based solutions including Microsoft’s SWAN. The results show that DIT outperforms existing solutions, improving the interdomain link utilization by 18% and the intradomain link utilization by 65%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.