Abstract

A large number of proteins contain free thiols that can be modified by the formation of internal disulphides or by mixed disulphides with low-molecular-mass thiols. The majority of these latter modifications result from the interaction of protein thiols with the endogenous glutathione pool. Protein glutathionylation and disulphide formation are of significance both for defence against oxidative damage and in redox signalling. As mitochondria are central to both oxidative damage and redox signalling within the cell, these modifications of mitochondrial proteins are of particular importance. In the present study, we review the mechanisms and physiological significance of these processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.