Abstract

Chronic kidney disease is one of the major health burdens affecting a considerable number of people worldwide. The aberrant regulation of lysyl oxidase (LOX) family of enzymes results in establishment of dense extracellular matrix (ECM). Since, LOX enzymes need copper (Cu) for their proper catalytic activity; the present study investigated the efficacy of a copper chelator, disulfiram (DSF) in renal fibrosis. Antifibrotic activity of DSF was investigated in kidney epithelial cells stimulated by transforming growth factor-β1 (5 ng/ml) as well as in two animal models. The renal injury was induced in animals by unilateral ureteral obstruction and folic acid administration (250 mg/kg). The DSF (3 and 10 mg/kg, every 3rd day) and standard LOX inhibitor, β-aminopropionitrile (BAPN, 100 mg/kg, daily) administration was started on day 0 and continued till the day of sacrifice. DSF was found to be a potent LOX/LOXL2 inhibitor to reduce crosslinking of collagen fibrils leading to reduction in the collagen deposition. In addition, the DSF was demonstrated to inhibit epithelial-mesenchymal transition in the tubular cells and fibrotic kidneys. Our results suggested that DSF, being a clinically available drug could be translated to clinics for its potent antifibrotic activity due to its inhibitory effect on LOX proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call