Abstract

Disulfidptosis (DSP), a form of cell death caused by disulphide stress, plays an important role in tumour progression. However, the mechanisms by which DSP regulates the tumour microenvironment remain unclear. Thus, we analysed the transcriptome profiles and clinical data, which were obtained from the TCGA database, of 540 patients with colorectal cancer. Compared with the patients with low DSP expression, those with high DSP expression exhibited significantly better survival outcomes; lower stromal and ESTIMATE scores; significantly higher numbers of CD4+ T cells, M2 macrophages, dendritic cells, and neutrophils; higher expression of immune checkpoint-related genes; and lower Tregs and HLA-DQB2 levels. A prognostic signature established based on DSP-related genes demonstrated an increase in risk score with a higher clinical stage. Risk scores negatively correlated with dendritic cells, eosinophils, and CD4+ T cells and significantly positively correlated with Treg cells. Patients with higher risk scores experienced significantly worse survival outcomes and immunotherapy non-response. Our nomogram model, combining clinicopathological features and risk scores, exhibited robust prognostic and predictive power. In conclusion, DSP-related genes actively participated in regulating the tumour microenvironment. Thus, they can serve as biomarkers to provide targeted treatment for colorectal cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call