Abstract

The Zika virus (ZIKV) was responsible for a recent debilitating epidemic that till date has no cure. A potential way to reduce ZIKV virulence is to limit the action of the non-structural proteins involved in its viral replication. One such protein, NS1, encoded as a monomer by the viral genome, plays a major role via symmetric oligomerization. We examine the homodimeric structure of the dominant β-ladder segment of NS1 with extensive all atom molecular dynamics. We find it stably bounded by two spatially separated interaction clusters (C1 and C2) with significant differences in the nature of their interactions. Four pairs of distal, intra-monomeric disulfide bonds are found to be coupled to the stability, local structure, and wettability of the interfacial region. Symmetric reduction of the intra-monomeric disulfides triggers marked dynamical heterogeneity, interfacial wettability and asymmetric salt bridging propensity. Harnessing the model-free Lipari-Szabo based formalism for estimation of conformational entropy (Sconf), we find clear signatures of heterogeneity in the monomeric conformational entropies. The observed asymmetry, very small in the unperturbed state, expands significantly in the reduced states. This allosteric effect is most noticeable in the electrostatically bound C2 cluster that underlies the greatest stability in the unperturbed state. Allosteric induction of conformational and thermodynamic asymmetry is expected to affect the pathways leading to symmetric higher ordered oligomerization, and thereby affect crucial replication pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call