Abstract

BackgroundReactive oxygen species (ROS) production is an early event in the immune response of plants. ROS production affects the redox-based modification of cysteine residues in redox proteins, which contribute to protein functions such as enzymatic activity, protein-protein interactions, oligomerization, and intracellular localization. Thus, the sensitivity of cysteine residues to changes in the cellular redox status is critical to the immune response of plants.MethodsWe used disulfide proteomics to identify immune response-related redox proteins. Total protein was extracted from rice cultured cells expressing constitutively active or dominant-negative OsRacl, which is a key regulator of the immune response in rice, and from rice cultured cells that were treated with probenazole, which is an activator of the plant immune response, in the presence of the thiol group-specific fluorescent probe monobromobimane (mBBr), which was a tag for reduced proteins in a differential display two-dimensional gel electrophoresis. The mBBr fluorescence was detected by using a charge-coupled device system, and total protein spots were detected using Coomassie brilliant blue staining. Both of the protein spots were analyzed by gel image software and identified using MS spectrometry. The possible disulfide bonds were identified using the disulfide bond prediction software. Subcellular localization and bimolecular fluorescence complementation analysis were performed in one of the identified proteins: Oryza sativa cold shock protein 2 (OsCSP2).ResultsWe identified seven proteins carrying potential redox-sensitive cysteine residues. Two proteins of them were oxidized in cultured cells expressing DN-OsRac1, which indicates that these two proteins would be inactivated through the inhibition of OsRac1 signaling pathway. One of the two oxidized proteins, OsCSP2, contains 197 amino acid residues and six cysteine residues. Site-directed mutagenesis of these cysteine residues revealed that a Cys140 mutation causes mislocalization of a green fluorescent protein fusion protein in the root cells of rice. Bimolecular fluorescence complementation analysis revealed that OsCSP2 is localized in the nucleus as a homo dimer in rice root cells.ConclusionsThe findings of the study indicate that redox-sensitive cysteine modification would contribute to the immune response in rice.Electronic supplementary materialThe online version of this article (doi:10.1186/s12953-017-0115-3) contains supplementary material, which is available to authorized users.

Highlights

  • Reactive oxygen species (ROS) production is an early event in the immune response of plants

  • Xie et al reported that cysteine residues in OsMAPK3 and OsMAPK6, which are reportedly involved in the immune response in rice, are sensitive to the redox status [12, 15]. These findings suggest that ROS production and accompanying redox modifications in cysteine residues play a critical role in the immune response in plants

  • To identify a potential immune response redox protein, suspension culture cells were established from calli that was induced from mature non-transgenic plants and transgenic plants expressing constitutively active (CA)- or dominant-negative (DN)-OsRac1

Read more

Summary

Introduction

Reactive oxygen species (ROS) production is an early event in the immune response of plants. Reactive oxygen species (ROS) production is part of the early immune response in plants [1, 2]. PAMPs-triggered immunity (PTI), which induces calcium bursts, ROS generation, MAP kinase activation, salicylic acid (SA) and ethylene productions, defense-related gene expression, and callose deposition in the cell wall, represents one layer. Elicitor-triggered immunity (ETI), which is initiated by the interaction between pathogen-secreted molecules and plant receptors (so-called R proteins), constitutes the second layer. ETI causes local or hypersensitive response-like cell death and oxidative bursts [2]. In both layers, ROS is the principal signaling molecule. OsRac is a key regulator of both PTI and ETI and of ROS production

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call