Abstract

In Silico searching for short antimicrobial peptides has revealed temporin-SHf as the short (8AA), hydrophobic, broad spectrum, and natural antimicrobial peptide. Important drawback associated with temporin-SHf is the susceptibility of its bioactive conformation for denaturation and proteolytic degradation. In the current report, disulfide engineering strategy has been adopted to improve the stability of bioactive conformation of temporin-SHf. The functionally non-critical Leu4 and Ile7 residues at i and i+3 position of helical conformation of temporin-SHf were mutated with cysteine disulfide. Designed [L4C, I7C]temporin-SHf was synthesized, characterized using NMR spectroscopy, and accessed for antimicrobial activity. [L4C, I7C]Temporin-SHf adopts helical conformation from Phe3 to Phe8 in the absence of membrane-mimetic environment and retains broad spectrum antimicrobial activity. The reduction potential of cysteine disulfide of [L4C, I7C]temporin-SHf is -289 mV. Trypsin-induced digestion and serum-induced digestion have confirmed the advantage of cysteine disulfide in imparting proteolytic stability to temporin-SHf. Disulfide-stabilized temporin-SHf may serve as a good model for the rational design of temporin-SHfbased antibiotics for treatment of infectious diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.