Abstract
The current coronavirus pandemic is exerting a tremendously detrimental impact on global health. The Spike proteins of coronaviruses, responsible for cell receptor binding and viral internalization, possess multiple and frequently conserved disulfide bonds raising the question about their role in these proteins. Here, we present a detailed structural and functional investigation of the disulfide bonds of the SARS-CoV-2 Spike receptor-binding domain (RBD). Molecular dynamics simulations of the RBD predict increased flexibility of the surface loops when the four disulfide bonds of the domain are reduced. This flexibility is particularly prominent for the disulfide bond-containing surface loop (residues 456–490) that participates in the formation of the interaction surface with the Spike cell receptor ACE2. In vitro, disulfide bond reducing agents affect the RBD secondary structure, lower its melting temperature from 52 °C to 36–39 °C and decrease its binding affinity to ACE2 by two orders of magnitude at 37 °C. Consistent with these in vitro findings, the reducing agents tris(2-carboxyethyl)phosphine (TCEP) and dithiothreitol (DTT) were able to inhibit viral replication at low millimolar levels in cell-based assays. Our research demonstrates the mechanism by which the disulfide bonds contribute to the molecular structure of the RBD of the Spike protein, allowing the RBD to execute its viral function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.