Abstract

Human β defensin type 3 (hBD-3) is a small natural antimicrobiotic. It is strongly cationic and has six cysteine residues which can form three pairs of intramolecular disulfide bonds under oxidized condition. Those disulfide bonds can break under reducing condition. However, the antibacterial activities of hBD-3 in its wild-type and analog forms are similar. In this project, the structure and dynamics of hBD-3 were investigated by running simulations on hBD-3 in its wild-type and analog forms in solvent, binding to negatively charged lipid bilayers, and self-assembly with POPG lipids. It was found that the RMSFs of hBD-3 in both its wild-type and analog forms are similar in solvent, while they are very diverse depending on the binding sites of hBD-3 with negatively charged bilayers. Calculating both the distance map and insertion depths for 18 hBD-3 molecules binding on the POPG bilayer, hBD-3 in its analog form binds stably with the POPG bilayer through the head and loop regions, while hBD-3 wild-type binds with the POPG bilayer on the two loop regions stably. hBD-3 analog caused membrane thinning and disrupted the POPG lipids more significantly than the wildtype. Based on the self-assembly simulations, hBD-3 monomer can bind with and embed inside the negatively charged POPG lipid membrane and have more contacts with the POPG lipid heads than with tails. The current work emphasized the structural diversity of hBD-3 interacting with negatively charged lipid membrane affected by the disulfide bonding states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.