Abstract

Perfringolysin O (PFO), a bacterial cholesterol-dependent cytolysin, binds to a mammalian cell membrane, oligomerizes into a circular prepore complex (PPC), and forms a 250-Å transmembrane β-barrel pore in the cell membrane. Each PFO monomer has two sets of 3 short α-helices that unfold and ultimately refold into two transmembrane β-hairpin (TMH) components of the membrane-embedded β-barrel. Inter-strand disulfide bond scanning revealed that β-strands in a fully assembled PFOβ-barrel were strictly aligned and tilted at 20 ° to the membrane perpendicular. In contrast, in a low temperature-trapped PPC intermediate, the TMHs were unfolded and had sufficient freedom of motion to interact transiently with each other; yet the TMHs were not aligned or stably hydrogen-bonded. The PFO PPC-to-pore transition therefore converts TMHs in a dynamic folding intermediate far above the membrane into transmembrane β-hairpins that are hydrogen bonded to those of adjacent subunits in the bilayer-embedded β-barrel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.