Abstract

Increasing numbers of disulfide linkage-employing polymeric drug carriers that utilize the reversible peculiarity of this unique covalent bond have been reported. The reduction-sensitive disulfide bond is usually employed as a linkage between hydrophilic and hydrophobic polymers, polymers and drugs, or as cross-linkers in polymeric drug carriers. These polymeric drug carriers are designed to exploit the significant redox potential difference between the reducing intracellular environments and relatively oxidizing extracellular spaces. In addition, these drug carriers can release a considerable amount of anticancer drug in response to the reducing environment when they reach tumor tissues, effectively improving antitumor efficacy. This review focuses on various disulfide linkage-employing polymeric drug carriers. Important redox thiol pools, including GSH/GSSG, Cys/CySS, and Trx1, as well as redox environments in mammals, will be introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.