Abstract

In passive microwave remote sensing of the Earth’s surface, it is essential to relate the emission to geophysical parameters. The emissivity ranges between 0 and 1. Hence, a slight emissivity variation leads to a significant change in brightness temperature. Many sources of error contribute to such tiny variations in emission. This paper quantifies microwave emission variability from a rough surface through model simulation due to the non-Gaussianity in height probability density (HPD) and power spectrum density (PSD). We considered Gaussian and exponential distributions for surface height and correlation functions, representing two extremes of asperity and skewness. Additionally, the surface under consideration contains multiscale roughness. The impact of the HPD and multiscale roughness on the polarization index of the emissivity is evaluated as a function of frequency and roughness. In general, assuming that Gaussian-distributed height leads to an underestimation of the emissivity, with V polarization being less sensitive to the non-Gaussian HPD and PSD effects than H polarization, the emissions are enhanced at high roughness with small look angles but are reduced for smooth surfaces at large look angles under non-Gaussian PSD. In a specific scenario, the dynamic range of the difference between exponential and Gaussian HPD is 0~10%, and the difference in emissivity caused by non-Gaussian PSD ranges from −2% to 16%. These results should be helpful in interpreting the radiometric measurements that exhibit fluctuations and differences with model predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.