Abstract
The study proposes a novel de-icing model that established a phase-change temperature gradient on an interface to alter the contact stability between the substrate surface and the ice cover. During the experiment, pits of the same size were machined on the surface of aluminum alloy and polymethyl methacrylate, which are both regarded as the experimental materials, and ethanol solutions with different freezing points were filled in the pits. The ice adhesion strength on each substrate was repeatedly measured under different conditions. The results show that the ice adhesion strength on a sample with a phase-change temperature gradient was significantly reduced when compared to the ice adhesion strength on a smooth sample. That meant that the proposed de-icing model had the excellent de-icing capability. Owing to the rigid constraints of the pit boundaries and different mass concentrations of the ethanol solutions, an ethanol solution filling in the pits at different positions had an intermittent impact on the elastic interface between the ice and substrate. This deformed the interface, and the accumulated ice was always subjected to an upward impingement load, which affected the contact stability of the interface and causing the accumulated ice to separate from the sample surface. The energy released from the solution at low temperature could be used to enhance the active de-icing of various components, and to advance the development of new de-icing methods and materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.