Abstract

ABSTRACTToll-like receptors (TLRs) are inevitable elements for immunity development and antibody production. TLRs are in close interaction with Bruton’s tyrosine kinase which has been found mutated and malfunctioned in the prototype antibody deficiency disease named X-linked agammaglobulinemia (XLA). TLRs’ ability was evaluated to induce transcription of TLR-negative regulators, including suppressor of cytokine signaling 1 (SOCS1), interleukin-1 receptor-associated kinase 3 (IRAK-M), tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20), and Ring finger protein 216 (RNF216), and Tumor necrosis factor-α (TNF-α) and Interferon-α (IFN-α) production via Lipopolysaccharides (LPS) and CpG-A oligodeoxynucleotides (CpG-A ODN). Measured by TaqMan real-time polymerase chain reaction (PCR), meaningfully increased transcripts of SOCS1 and RNF216 were found in XLA peripheral blood mononuclear cells (PBMCs). Also, TLR inductions of XLA have led to similar downregulations in the regulator’s transcription which was different from that in healthy donors. Cytokine measurement by enzyme-linked immunosorbent assay (ELISA) revealed a significant lower TNF-α production both before and after LPS. By selected molecules in this study, TLRs’ potential defectiveness range expands TLRs expression, downstream signaling, and cytokine production. The results show new potential elements that could play a part in TLRs defect and pathogenesis of agammaglobulinemia as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.