Abstract

BackgroundAltered cerebral blood flow (CBF) and amplitude of low-frequency fluctuation (ALFF) have been reported in hemodialysis patients. However, neurovascular coupling impairments, which provide a novel insight into the human brain, have not been reported in hemodialysis patients.MethodsWe combined arterial spin labeling (ASL) and blood oxygen level dependent (BOLD) techniques to investigate neurovascular coupling alterations and its relationships with demographic and clinical data in 46 hemodialysis patients and 47 healthy controls. To explore regional neuronal activity, ALFF was obtained from resting-state functional MRI. To measure cerebral vascular response, CBF was calculated from ASL. The across-voxel CBF–ALFF correlations for global neurovascular coupling and CBF/ALFF ratio for regional neurovascular coupling were compared between hemodialysis patients and healthy controls. Two-sample t-tests were used to compare the intergroup differences in CBF and ALFF. Multiple comparisons were corrected using a voxel-wise false discovery rate (FDR) method (P < 0.05).ResultsAll hemodialysis patients and healthy controls showed significant across-voxel correlations between CBF and ALFF. Hemodialysis patients showed a significantly reduced global CBF–ALFF coupling (P = 0.0011) compared to healthy controls at the voxel-level. Of note, decreased CBF/ALFF ratio was exclusively located in the bilateral amygdala involved in emotional regulation and cognitive processing in hemodialysis patients. In hemodialysis patients, the decreased CBF (right olfactory cortex, anterior cingulate gyrus and bilateral insula) and ALFF (bilateral precuneus and superior frontal gyrus) were mainly located in the default mode network and salience network-related regions as well as increased CBF in the bilateral thalamus.ConclusionsThese novel findings reveal that disrupted neurovascular coupling may be a potential neural mechanism in hemodialysis patients.

Highlights

  • End-stage renal disease (ESRD) is the final stage of chronic kidney disease, and diagnosed as the estimated glomerular filtration rate

  • Hemodialysis patients and healthy controls were included for analysis in this study

  • Across-voxel correlation between cerebral blood flow (CBF) and amplitude of low-frequency fluctuation (ALFF) was observed in hemodialysis patients, which was lower than that in healthy controls at the global level, presumably indicating global neurovascular decoupling in hemodialysis patients

Read more

Summary

Introduction

End-stage renal disease (ESRD) is the final stage of chronic kidney disease, and diagnosed as the estimated glomerular filtration rate

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call