Abstract

Cortical malformations are commonly associated with intractable epilepsy and other developmental disorders. Our studies utilize the tish rat, a spontaneously occurring genetic model of subcortical band heterotopia (SBH) associated with epilepsy, to evaluate the developmental events underlying SBH formation in the neocortex. Our results demonstrate that Pax6+ and Tbr2+ progenitors are mislocalized in tish+/− and tish−/−- neocortex throughout neurogenesis. In addition, mislocalized tish−/− progenitors possess a longer cell cycle than wild type or normally-positioned tish−/− progenitors, owing to a lengthened G2+M+G1 time. This mislocalization is not associated with adherens junction breakdown or loss of radial glial polarity in the ventricular zone (VZ), as assessed by immunohistochemistry against phalloidin (to identify F-actin), aPKC-λ and Par3. However, vimentin immunohistochemistry indicates that the radial glial scaffold is disrupted in the region of the tish−/− heterotopia. Moreover, lineage tracing experiments using in utero electroporation in tish−/− neocortex demonstrate that mislocalized progenitors do not retain contact with the ventricular surface and that ventricular/subventricular zone (SVZ) progenitors produce neurons that migrate into both the heterotopia and cortical plate (CP). Taken together, these findings define a series of developmental errors contributing to SBH formation that differs fundamentally from a primary error in neuronal migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.