Abstract

AbstractAimClimate change causes major shifts in species distributions, reshuffling community composition and favouring warm‐adapted species (“thermophilization”). The tree community response is likely to be affected by major disturbances, such as fire and harvest. Here, we quantify the relative contributions of climate change and disturbances to temporal shifts in tree composition over the last decades and evaluate whether disturbances accelerate community thermophilization.LocationQuébec, Canada.Time period1970–2016.Taxa studiedTrees.MethodsUsing 6,281 forest inventory plots, we quantified temporal changes in species composition between a historical (1970–1980) and a contemporary period (2000–2016) by measuring temporal β‐diversity, gains and losses. The effects of climate and disturbances on temporal β‐diversity were quantified using multiple regressions and variation partitioning. We compared how community indices of species temperature preference (CTI) and shade tolerance (CSI) changed for forests that experienced different levels of disturbance. We quantified the contribution of species gains and losses to change in CTI.ResultsTemporal β‐diversity was mainly driven by disturbances, with historical harvesting as the most important predictor. Despite the prevailing influence of disturbances, we revealed a significant thermophilization (ΔCTI = +.03 °C/decade) throughout forests in Québec. However, this shift in community composition was weakly explained by climate change and considerably slower than the rate of warming (+.14 °C/decade). Importantly, thermophilization was amplified by moderate disturbances (+.044 °C/decade), almost a threefold increase compared with minor disturbances (+.015 °C/decade). The gains and losses of a few tree species contributed to this community‐level shift.ConclusionsOur study provides evidence that disturbances can strongly modify tree community responses to climate change. Moderate disturbances, such as harvesting, might reduce competition and facilitate gains of warm‐adapted species, which then accelerate thermophilization of tree communities under climate change. Although accelerated by disturbances, community thermophilization was driven by the gains and losses of a small number of species, notably gains of maples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call