Abstract

In this paper, a model-based robust control is proposed for the polymer electrolyte membrane fuel cell air-feed system, based on the second-order sliding mode algorithm. The control objective is to maximize the fuel cell net power and avoid the oxygen starvation by regulating the oxygen excess ratio to its desired value during fast load variations. The oxygen excess ratio is estimated via an extended state observer (ESO) from the measurements of the compressor flow rate, the load current, and the supply manifold pressure. A hardware-in-loop test bench, which consists of a commercial twin screw air compressor and a real-time fuel cell emulation system, is used to validate the performance of the proposed ESO-based controller. The experimental results show that the controller is robust and has a good transient performance in the presence of load variations and parametric uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.